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CRW

Coalescing Random Walk (CRW):

• Initially one walker at each vertex of the graph G

• Each walker performs independent continuous time simple
random walk.

• Whenever two walkers meet(collide), they merge into one
walker. This walker continues to do (CT)SRW.

Can be extended to general Markov chain with rate r. In this talk
we focus SRW so that rx ,y = 1[x ∼ y ] (general graph) or
rx ,y = 1/d(x) (regular graph). Our result also applies to general
symmetric rates.

Motivation: duality with the voter model.
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An example

Figure: Black=occupied, Green=vacant.



Observation/Question

Simple facts:

• On a finite graph, the total number of walkers decreases with
t and eventually stabilizes at 1.

• On any graph, the probability that a given site is occupied
decreases with t.

Questions

• How long does it take for all walkers to coalesce into one?

• What is the decay rate for the fraction of occupied
site/probability of a site being occupied?(main focus)
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CRW on the complete graph- Kingman’s coalescent

Jump rate across each edge=1/(n − 1).
Lt : # of walkers at time t. τcoal: the (random) coalescence time.
L0 = n and Lt decrease by 1 at rate Lt(Lt − 1)/(n − 1). Let ei be
i.i.d.exponential random variables with unit rate, then

τcoal =
n∑

i=2

ei
i(i − 1)/n

.

Kingman’s coalescent: L0 =∞. Lt → Lt − 1 at the rate of
Lt(Lt − 1)/2.
Pt = E(Lt)/n: expected fraction of occupied sites. Fix t, send
n→∞

Pt = 1/(1 + t).
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Spatial structure

Often there is a spatial structure.

• Zd .

• Td .

• General vertex transitive graphs.

• Random graphs (e.g., configuration model).



Heuristic argument [van den Berg-Kesten, 2000]

Consider Zd . Pt = Pt(o): prob. that origin is occupied at time t.
Take 1� ∆(t)� t.

−dPt

dt
= P(o and e1 occupied at t)

∼
∑
x ,y

P(x and y occupied at t −∆(t))×

P(x + S∆(t) = o, y + S ′∆(t) = e1, x + Sr 6= y + S ′r , ∀r ≤ ∆(t))

∼ P2
t−∆(t)α∆(t).

• x and y are the location of the walkers that later come to o
and e1. S·, S

′
· : independent random walks starting from o.

• α∆(t): the probability that two time-reversed random walk
starting from o and e1 don’t collide by time ∆(t).



Results on Zd

Assuming Pt ∼ Pt−∆(t) and αt ∼ αt−∆(t). The heuristic suggests
that Pt ≈ 1/(tαt) for moderately large t. This was known to be
true for SRW on Zd , d ≥ 2.

Theorem (Bramson-Griffeath, 1980)

Consider the CRW on Zd . Ww have, as t →∞,

Pt ∼

{
1
π

log t
t d = 2

(γd t)−1 d ≥ 3

where γd is the probability that a simple random walkin Zd

starting from origin never returns to it.

By justifying previous heuristic argument, [van der Berg-Kesten,
2000] proved the same result for d ≥ 3 (their proof also works for
general coalescing model which allows for more than one particles
per site).
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Beyond Zd -Mean Field Predictions

Set
tmeet = Eπ2(τmeet).

Aldous and Fill conjectured that for general transitive graph
(transitivity means the graph looks the same from every vertex)

τcoal
tmeet

=
∞∑
i=1

ei
i(i − 1)/2

.

Here ei ∼ Exp(1). Equality holds for complete graphs.
Intuition: the time to go from i particles to i − 1 takes the
minimum of i(i − 1)/2 independent exponentials.



Aldous-Brown approximation

Lemma (Aldou-Brown, 1992)

For an irreducible reversible Markov chain on a finite state V with
stationary distribution π and A ⊂ V , if we denote the hitting time
of A by TA and its density function w.r.t. the stationary chain by
fTA

, then ∣∣∣∣Pπ(TA > t)− exp

(
− t

Eπ(TA)

)∣∣∣∣ ≤ trel
Eπ(TA)

,

and

1

Eπ(TA)

(
1− 2trel + t

Eπ(TA)

)
≤ fTA

(t) ≤ 1

Eπ(TA)

(
1 +

trel
2t

)
.

Consider the product chain and take A to be the diagonal set. We
have Eπ(TA) = tmeet.



Beyond Zd -Mean Field Predictions

[Oliveira, 2013] proved the Aldous-Fill conjecture under the
condition tmix � tmeet (which is proved by Hermon to be
equivalent to trel � tmeet).
The time it takes to make n − h collisions is about

tmeet

∑
i≥h

ei
i(i − 1)/2

∼ 2tmeet

h
.

2tmeet

h
= t ⇒ h =

2tmeet

t
.

Hence the number of particles that remain at t is roughly h and we
have the prediction

Pt =
h

n
∼ 2tmeet

nt
.



Equivalence of the two predictions

Two predictions for Pt (for t large)

Pt ∼
1

tαt

where αt = Po,νo (τmeet > t) (νo is a random neighbor of o),

Pt ∼
2tmeet

n
for finite graphs

are equivalent to each other for many graphs satisfying certain
transience conditions (e.g., αt is almost a positive constant for
large t).
Kac’s formula!



Main Results: finite graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

Two predictions holds as long as 1� t � tcoal (called the Big
Bang regime since the number of particles is evolving rapidly in
this regime) for

• transitive graphs (transitivity means the graph looks the same
from every vertex) Gn such that diam(Gn)2 � n/ log n,

• Configuration Model CM(n,D) with 3 ≤ D < M.
If D is a constant d then CM(n,D) is random d-regular
graph.



Configuration model

Construction of the configuration model CMn(D)

• Let D be a probability measure on Z+, and n ∈ Z+.

• We take n vertices labeled 1, . . . , n, and d1, . . . , dn i.i.d.
sampled from D.

• For each vertex i we attach di half edges to it. Then we get
Gn by uniformly matching all half edges, conditioned on∑n

i=1 di being even.

The local weak limit UGT(D) of CMn(D) is a unimodular
Galton-Watson tree where

• the root has offspring distribution D

• later generations have offspring distribution D∗:

P(D∗ = k) :=
(k + 1)P(D = k + 1)∑∞

i=0 iP(D = i)
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Main Results: infinite Graphs

Theorem (Hermon-Li-Yao-Zhang, 2021)

The first prediction Pt ∼ 1/(tα) as t →∞ where

α = Po,νo (τmeet =∞).

holds for

• all transient transitive unimodular graphs (including all Cayley
graphs and all amenable graphs(=graphs with subexponential
decay of return probability)),

• unimodular Galton-Watson tree UGT(D). If D is a constant d
then UGT (D) = Td .



Ingredients of the proof

Using the machinery in the proof of Zd case by
Braomson-Griffeath, it suffices to

• give an upper bound of Pt that differs from the ‘true value’ of
Pt by a multiplicative constant,

• show that the coalescence probability

Pπk (C(X1, . . . ,Xk+1) ≤ t) ∼ (k + 1)!

(
t

tmeet

)k

.

Another indication of mean field! B-G proof heavily relies on the
specific geometric structure of Zd .



Solution

• For the first part, we show that

c
infx

∫ t
0 ps(x , x)ds

t
≤ Pt ≤ C

supx

∫ t
0 ps(x , x)ds

t
.

• For the second part, we use the reversibility of random walk to
transform collision probability to non-colliding probability. If
two forward paths collide at t then (after reversing time) the
backward paths don’t collide in [0, t].



Open Question

Our results are stated for the expectation of the number of
occupied sites (which can be upgraded to weak law of large
numbers using negative correlation). What about fluctuations?
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